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Mathematical aspects of nonlinear shallow shell theory are examined in I’-‘] (*). 
Shallow shell relationships cannot always be utilized in a study of the problem of the 
equilibrium modes of a closed cylindrical shell within the scope of the nonlinear theory 
of “mean” flexure I’*‘1 . A theoretical investigation of the nonlinear equations for a 
cylindrical shell, obtained without utilizing the shallowness hypothesis, is 

P 
resented 

herein. The existence of a generalized solution of the nonlinear problem or an arbit- 
rary loading, and arbitrary support conditions is proved. 

1. Fundamental relrtlan~hip~. Formulation of the problem. let 
us examine me following modification ot the relationships of the nonlinear theory for 
a cylindrical shell which are easily obtained from the relationships for the mean flex- 
ure 1’1: 

(1.1) 
et = u, + t/a w,=, e, = v, + ku + IJg (wy - kv)l 

2e,, = uy + v, + wx (w,, - kv) 
x1 = --&CC, xt = -w,,,, + kvy, xl3 = -wrrcv + kv, 

T, = 2Bl h + ve,), T, = 2B, (vel + e2), T,, = B, (1 - v)Ze,, 

MI = 24 0% + vu MS = 24 (~1 +x,), M,, = 24 (1 - vkr 

& = Bh 2(i_vl)’ Ba= 
Eh* 

24 (i - v’) ’ 
BII=+ BI1= 2, o<v<0.5 

The following notation is utilized in (1.1): n, 0, W are displacements of points of the 
middle surface; the subscript 2, k on the U, u, w denotes differentiation with respect to 

2, Y 9 respectively; el, e,, era are the tensile and shear strains, and XI, Y~,_x~o chan- 
ges in the curvature of the shell middle surface; 2’1, T,, Trs the stress resultants in the 
plane of the shell; Ni,-Ns transverse forces; Mu, MI, Mrs me bending moments and 
torque ; E, V the elastic constants of the material; h tile thickness, and k the shell 
curvature. The z -axis is directed along the cylinder generator, me Y -axis along the 
tangent to the direcnix, and the z-axis along the normal to the middle surface. 

The shell planform occupies a domain G with boundary r. 

l ) See also the Doctoral Dissertation of I. I. Vorovich. 
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On the solvability of general problems for a shell 65 

Here I, is half the shell length. Evidently rl , 1 rls are the left and right endfaces 
of the shell, respectively. 

The state of stress in a normal section of the shell is characterized by four quantities: 
T, the stress resultant normal to the contour in the plane of the shell; 8, the tangen- 

tial; N, the transverse stress resultant; and M,, the bending moment. The equilibrium 
differential equations in the stress resultano are the following: 

z&F - (x-wtp,zl)=o 

OTIS %“I 
,Z+~+kT,(wv-ku)+kT,,r+k zL+x ( aMI > - w-_(w,, - kr)Zs]=O (1.2) 

!?!$+2Z.!G+!! + & (T,tu,) + $ (Ttsla,) + 

+ & IT,, (W” - ko)] + $ [T, (IQ - ku)] - kT, .- (Z + ZI) = 0 

Here X, Y, Z are surface loading components in the t, y, z coordinate system 
whose direction is independent of the strain. Zl the normal following loading (hydroa 
static pressure). Taking account of the X t, Y, components within the scope of mean 
bendin theory is inconsistent. 

Let i e geometric and static boundary conditions be given on the sets ?I- and Yr’ 

(i = 1, 2, 3, 4)) respectively. Evidently yr+ C ra, and fr_ =I rt \ y,+ (i = 
= 1,2,3,4),since the support may be at internal points of the domain G, The follow- 
ing boundary conditions are considered on r,: 

UI -00, Y,- - 0 Iv,- = 0, au, Ir,- = 0, W IV,_ = 0 0.3) 

iT, - (To - k,uN Iv,+ = 0, V, - W - k,v)I Iv,+ = 0 U.4) 

Wn - (N” - k,w)} Iy,+ = 0, {M, - (MO - k,wJ} iI,+ = 0 

Here kt (~)t ka (~1, ka (~1, k- ( ) I 9 are characteristic of the elastic support ; 

To, so, N”, M” the external loading on the shell endfaces: the tensile, shear , 
transverse stress resultants, and the bending moment, respectively, The boundary con- 
ditions on rs are: 

u, v, w, wy, T,, S,, N,, Af ,, I;%, = 0 (1.5) 

Henceforth, we shall study the boundary value problem (1.2) - (1.5). After having 
substituted (1.1) into (1.2). we obtain the following equilibrium equations in terms of 
displacements: 

&+‘$u,+!$h,=-&[vkw+ ‘/,~a,‘+ ;(wu-kkv)s 

I 

I 
- 

-(i- w,(w,-kkv) + 1 IX - tDx& I i2 aY 28 3 
1 

fl 

i+v 
-u,+iq+ +40’)0,+(1 +a’)uW-- (-+stD,- 

2 
a’ 

-p%VV = --~&[w,..w,-kv)]-$[$ws~+ kw + 
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+~tw,--u)‘]--(wy [ -ku) vu,+;wxa+v,+kw+ 

+&,-kt+~kw&,, +vX+ w,(wU- ku)j + 

+ 
IY - 0% - W 211 

28, = fr 

&I f 
it(W SW 

az’ + 2 &S&j +;;--(2-v)kv,,-k;; = 

= $ w, 
1 [ 

3 
u, + ;w,‘+vv,+vkwf$(w~ - kv)*] } - 

-k vux+$ 
I wx’ + vy + kw + f (wU - k&j + .$- ((w, - kv) x 

X I% + ; wax 1. u,, -I- ,fw +; (q, - k+l) + f(f - v) ;{(wy - kv)[u, + 

+ ~x+w&v--WJ) + @-+&{w&,+ u,+ 

+ w,(w,, - kv)]) - w G fs (n* = kaBZ,) WI 

The equations on the boundary are 

I.4 I-f,- = 0, ux + vu,, = - VLW - tiil (wx’ + v (wy - ku’)] f 

+ (2B~)-x(T”-k~u)~ (Di Ha rl* 

&J Iv*- = 0, U, +(1 + 4a’)v,-$Pw~ = 

= (Se-kklv)fB1(l -v))-*-_(w,-kti)G 0% Ha ~a+ 

=qv,- = 0, j$a- (2 --v)(w*- ku,,)] =(2Bg)-l (IV” - k,w) + 

+ Bi, (w, [u, + ‘/zwx’ + vvy + Vb + ‘/rv (wv - k~)“ll -F 

+ ZIJ/~ (1 - v) ((wv - ku) @v SW- ur, (wv - ku)ll s @)s m YS+ 

wu, Iri = 0, w, + v (wy,, - kv,) = - (28,)~’ (M’ - kdw,) s @)r Aa r,+ 

u, v, w, U”, vy, W11’ wyv, wwy I;z”,, = 0 (1.7) 

Before investigating the problem (1.6) - (1.7), let us introduce some auxiliary con- 
cepu, and let us prove some propositions. 

2. Auxilirry proporitiont. Let 0 = (u, t), 4 denote a vector function with 
components U, 19, w. Let us introduce the bilinear form 

It is easy to see that if A (la, et) = f3, then 

81 = e, = ea = )cl = X, = xl9 = 0, wr E w,, - kv = 0 
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This means that w is the displacement of the shell as a rigid body. 
Let us introduce some functional spaces. A class of functions given in a strip 1 *I <h, 

which is periodic in Y with period Zl,, can, dependfng on the metric introduced in it. 
result in different functional spaces. Hence, because of periodicity. the norm may be 
computed by means of the periodic@ rectangle in u , the domain C. In contrast to the 
customary spaces G (G), L, (G), W,“‘(C), let us supply the space with the degree sym- 
bol in the case of periodic&y in y The most important of the above-mentioned 
classes of functions carry over completely to the case 0 P 

roperties 
partial or total periodic&y. In 

particular, the space WP”’ (Go) is completely analogous to the Sobolev space, and the 
same kinds of imbedding theorems I’] are valid for it as for the classes of WP@~(G). 
The norm W,“) (G.1 is denoted by 11 (I,, P, c, and me norm in C (G’) by 1 l 1 
Several other notatiols are elucidated below. 

In this notation 

Let E , the closure of all smooth vector functions o in the strip 1 t 1 < 1, which are 
periodic with period 24 in v and satisfy the geometric boundary conditions (1.3). o 
denote the closure in the norm of the product of the spaces 

w,(l) (Go) X W,(l) (Go) x w,“‘(Q) 

As usual, the norm is defined as the direct product 

Let M c E be a linear set of all elements P E E for which A (a, w) = 0. Combin- 
ing those elements 8’ and 0” equal to M in absolute value, i, e. o’ - w” E M, 
into a single class co , we arrive at the space of classes E* = E/M, a factor space of 
me space Lt over the subspace M. In other words, the displacement o is defined to 
the accuracy of dis lacement of the shell as a rigid body under rhe constraint (1.3). 
By definition, the actor-space is P 

lJOl~*=Infgo’g@ tu’E@ 

It is easy to see that there exist3 a unique “normal” representative 6P of the class (u 
such that 

The space E is a Hilbert space, hence %F is also a Hilbert space, and therefore 
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Lemma 2.1. For all o EE+ 

m* < II 0 llE* (m > 0) (2.2) 

Q=l@l, u/~.p,o; /=tQ WY’ U, 0; a=C,r 

Here y is a piecewise-smooth contour fromz, I < p < 00 and m is independent of 
the choice of o but depends on (a, p}. Moreover, the ratio expressed by the inequality 
(2.2) possesses total continui 
compactness in the sense of XS 

i.e. from me boundedness of the set {o} in E+ follows 
e left sides of (2.2). 

Proof. The inequalities (2.2) are obtained by a unique method by using imbedding 
theorems, hence, we carry out the proof on one of them as an illustration 

Let us show the complete continuity of the ratio in this same example. Let the set 
{~:IIOIIE~ 6 C) be given. Consequently Il@*llE d C, and taking into account the com- 

plete continuity of the imbedding wI(s)(C ) l + C(C”), we-obtain that (@pL) is compact 
in C(C’). The assertion in the Lemma is proved. 

Let us introduce a scalar product in the space E* 

where the form A is defined by (2.1). Then 

+ 11, (i - V) (84” + vJa + a [wxa + (WV - Wal + Bu Itlo, + Wyy - VkvJ we. + 
+ (vwz + W”” - kv,) (uJvv - kV”) + 2 (i - 4 (w,, - kvJal) 6% (2.3) 

Lemma 2.2. For all o EE* 

~II~~~~60~0~6m~~I~ll~. 04 ml 3 0) (2.4) 

Proof. According to (2.3), evidently 

Passing to the exact lower bounds in all the elements o’ E o we obtain that 
(OIIH d ml II%.. L e us prove the left side of tie inequalities (2.4). It is actually t 
necessary to show that 

Let us assume m= 0. In this case there exists a sequence (a,,) such that o,,\\~. = 1, 
(Io,(Ir,+ 0, and o,+o,, weakly in EL as n--t 00. 

It turm out that the assumption that o0 = 0 results in a contradiction. In fact, let 
o. = 0. From I10,llH-t 0 we obtain 

l 

U V l + kw;, U,, ; + V,, :I w,,.:rs (Dn.;,, - %, ; l8.X’ n,u 
. 

W 
n. XY - k%, : -, 0 in & (G”) (2.5) 
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and from the fact that a,,+ 0 weakly in E+, and from Lemma 2.1 we have 

On the basis of (2.5). (2.6), we conclude 

. . 
V 

n. Y’ 
W n, XX’ w,:yy+ OinLa(C”) 

The estimate of the mixed derivative 1’71 is known for functions from W,(‘)(C) and 
we present it in our terminology 

WY* 
noxy 0.1 6 comJt (II U’“;* #o.r -I- I w,,,*yy b,r + IIw?l:x lo,, + Pn;“~., + IWAo.1) (2.7) 

AS a result, .I/%*Ils,r-t 0 from (2.6), (2. ‘7). According to (2.4), it hence follows 

that IIu~*II~,~, il~~+Ih,, + 0. This means that Il%IIp -to as n--t oo(llfhllE. = I). 
There is a contradiction, hence 00 # 0. 

We have 0, = 00 + qnP where Qn = On - 00 and qn-t 0 weakly in E'. By 
assumption 

then (@OS Q)H is a linear functional in E* and the product (t$ %)H-+ 0 for Q,,+ 0 
weakly in E* . From this and from (2.8) we obtain IlOoll~* i- IlcFnIIH’+ 0 as a+ 00. 
This time we arrive at a contradiction to 00 # 0. The assertion of the Lemma is proved. 

According to Lemma 2.2, the norms II ‘11~ and II *llx. are equivalent; the space E* 
with the norm 1l.U~ wiU be called the space H.~he following lemma is valid. 

L e m ma 2.3. The assertion of Lemma 2.1 remains valid if H replaces iP through- 
out in the formulation. 

2, Generrlised :olutlon, Let us assume the following conditions to be satfs- 
fied: 

X, Y, 2, EL, VI, 2 EL ((7, To9 k, E GJ (I$‘) 

so, ka EL, (n’), N”, k, EL (vs’), M”, k. EL, (v.‘) (q> 1) (3.1) 

Here q is some fixed number. It is known that the equilibrium condition can be 
expressed by using the principle of virtual displacements 

~(0, 0”) E {z’,(u,” + la,wx”) + T,[vv”+ kw” +(~,--~)(~yo-k~o)l + 

+ T,, [ uYo + uIo + w, (WY0 -ho) + Go (WV - ku)l- 

- Mlw,xo - MS (w,,,,” - ku,“) - 2M,, (wx,,O - kux”) + 

+(x.-ww,z,)uo+[Y-(w,,--u)~~l~o+(~+~s)wo~~~- 
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- 1 

VI+ 

(z=-klU)uod~- 1 (&-Ic,b)uOd~- 1 

+ 1 ;iP 

*I+ 

- k,w,) wxo dy = 0 
ri+ 

(N” - k,w) w”dr + 

(3.2) 

Here o”‘is a virtual displacement, and the curvilinear integrals are written taking 
into account the customary rule of traversing the contour. 

Definition 3.1. Let the function 0 E E, which satisfies (3.2) for all o” E E, 
the generalized solution of the problem (1.6), (1.7) under the condition (3.1). 

It is easy to see that each member of (3.2) is meaningful under these conditions. To 
do this it is sufficient to estimate each member in (3.2) by using the Holder inequality 
and Lemma 2.3. 

Let us show that (3.2) is equivalent to some operator equation in H. Indeed, accord- 
ing to (3.2), (1.1) we Can write the following equation for the representatives 02, tie+ 
of the classes o: and 00 : 

A (a*, coo+) = 281\ { (ux’ + vu/ + vk@) uXo*+( yv* + w + 
i; 

+ vu;) (uv”* + kro.+) + I/¶ (i - v) (u”+ + t&‘) (uyO* + ayO+) + 

+ Bu [(w=* + ““w’ - Vvv’) lo&’ + (Vv&’ + v’v,,’ - kvv*) x 

x (wme* - kuJ + 2 (1 - v) (w$ - kv;) (wOivo* - kv;*)] + 

+ a (wz*wxo+ + (wv*;- kv*) (wv’* - kv”*)]} dG + 

+ <2B1 k{- a [wti*wxo* + (wv’- ku*) (w,,“*.- kv”*)l i- 

+ [UX* + l/r v&** + YU”’ + vkw+ + ‘/, v (W”’ - ku’)‘] wx*w,&o* + 

+ ‘/s bvx** + v Pv’ - ku’)‘] u; l + [vu,* + l/a w.J*’ + vy* + kffl* + 

+ I/, (w”* - kvqq (wv’ - ku.) (up - kv**) + ‘/¶ [w=” + (WV’ - kv’)‘l (vv” + kto.9 + 

+ I/, (i - v) [uv* + vx* + w*’ (y,’ - kv*)] Lw%* (y,“’ - kv’*) f 

+‘Dx ** (wv’ - kv*)] + I/, (I- V) [lo,+ (y,* - W (y,“* + p,‘*)1) da> + 

+ \ ((x - WHIZ,) u”* + [Y - (w,,’ - kv*) 2,) v“* + (2 + 21) w’*) dC - 

b 

- (To 
s 

- kluq u .+dy 4 
c (So - k,v*) v”dy - 

711 l + 78 

- ' (No - k,w*) ,#' dy + 5 (M’ - k,w**) wxoW 10 
s 

(3.3) 

1a+ Y.+ 

Henceforth, only normal representatives will appear throughout in the expressions, 
hence we omit the asterisk. Let us use the representation 

A (0,W) = (0, O”)H -c Ql (Ott*) + Q¶(W 09 (3.4) 

where Qr (0,~~) is a member from (3.3) in the brackets (. , . .) . 

Lemma 3.1. The functional 

pr (0) = B1 {uxwx’ + ‘1, w$ + V, (toy - kv)’ + h 6% - kvla 
s 

+ 
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(3.5) 

t-%(LDy - kv)‘ + VUAW,, - kv)' + v (v,, + ku.‘)w~’ + ‘/W’s ’ (Wu - kv)* + 

+(I - v) (u, t vx) ws (w,, - kv) + l/a (1 - v)lut’ (WY - kv)‘) dG 
is weakly continuous in H. 

Proof. Let CO,,+ os weakly in B, then by Lemma 2.3 

[I al& - loo,‘, &,*,, I (‘On, y - &)’ - PO. v - kQ.L.r -v O, 

It is known that (fn, Bn)+ (fo#Bo) if In-+ fs in the weak, and P&go. in the 
strong sense in Hilbert space. Applying this reasoning in (3.5) we obtain PI (on)+ 
-+ PI (00) for a,+ og weakly in H. Therefore, PI (a) is weakly continuous in H 

It can be seen by direct verification that Q, (o, ,,,O) is a Gateau differential of 

PI (a). The following estimate holds 

Hence Q1 (0, 0’) is a linear functional in 0” in H, and by the Riesz lemma the 
following representation is valid 

(gra&fP1 (a), ~EI = Qt (a9@“) (3.6) 

Note. The operator grad# Pa (w) is strongly continuous in H, as follows from 
the theorem of E. S. Tsitlanadze [s] on the complete continuity of potential operators. 

Lemma 3.2. The representative 

Qa (0, 07 =(K,o, oO) (3.7) 

is valid, where Kao is a strongly continuous operator in H . 
Let us first prove that (3.7) holds. It is easy to obtain the inequality 

where the constants are positive, and independent of O, COO. It is hence seen that 
Q, (a, QD*) is a linear functional in Q)O and the Riesz lemma verifies (3.7). Now let 
o,+ os weakly in H..Taking account of (3.1) and applying the Holder inequality, 

we can write the following: 

I (Kw,, - KWO, a*JH I - 1 Qm (‘o,,, a*)- 01 (or, 0’) 1 < 

6~~~~~l~“,.--~,.Ilo.~,+I”n,v-‘Oo,v$.*,+ 

+S~~--ob.cr,+Iun--o~,,~+I~~-~o(q,,,+ 
+b,..- woua. x$,.,+~w,- wb% (3.8) 

where qr, q,, q, > 1 are some indices. Taking account of (3.8), the weak convergence 
to CO,, Lemma 2.3, and the following norm definition 
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we obtain that Ksw,+ Ksas in H if W,+ 01 weakly. The Lemma is proved. 
Let us substitute (3.6) and (3.7) into (3.4) 

A (Q, w’) = (w - Kw,w’)H, K = -gradHP1 (0) - KS (0) 

Therefore. (3.2) is equivalent to the equation 

(0 - Ko, WO)H = 0 (a0 E H) (3.9) 

or an operator equation with the completely continuous operator 

w--w =:o (3.10) 

4. Exittence of the generrlised ~OlutlOnr The complete continuity 
of the operator K in H permits application of the Schauder-Leray method to prove 
the existence of a generalized solution of the problem. The scheme for utilization of 
this method in the theory of solvability of boundary value problems for shallow shells 
has been developed in [a], hence, we shall not dwell on terminology, Let &’ (R,O) be 
a sphere of radius fl with center at zero 

s (R, 0) = (0 : Ijo /IIf = 1) 

It turns out to be sufficient to prove that the completely continuous vector field 
w - K. is homotopic on the sphere S (R, 0) of sufficiently large radius R to a 

completely continuous vector field I W, where 1 is the identity operator, for which 
the rotation is + 1 I* 1 , For homotopy it is sufficient to show that 

(I-tK)o#O for W,~ES(R,O)XIO, 11 (4.1) 

and R is arbitrary. Here 1 I is a real parameter. When (4.1) is valid, it follows from 
the theory of the Schauder-Leray method la] that a solution of (3 1 ) exists in the sphere 

llol/rf CR. In th’ IS section, it will essentially be proved that condition (4.1) is satis- 
fied. Establishment of the inequality (4.1) is one of the basic propositions of this proof. 
The method proposed in [a] is utilized here to obtain it. 

Let us introduce 

el = a,, ea = uV + kw, e1, = u, + % (Ut 

01 = l/s ha, 0, = xi8 hV - k4’, 6,, = wx (wy - kv) 

- (a,, 
e+ Zei, 

=2, %2), a = e, 0, x, e, T, M 
R > 0, a+ = R-la, a = X, Y,..,,M” 

@ 6) = A (a> w) = (w - K, w, O)H 
0’ (R, w+) = R-W (a), 

II li 
w+ H 

Taking account of (3.2), let us write the expression 

@ (0) = 2 CT a> f 0% x> - 1 ITI% + T12u, + T,es + T,,u,l dG + 
G 
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+ {(x-w~,~~)u+[Y-(~,--~)Z~I~+(Z+Z~)~O)~G- 5 - S S (N”-ku+dy + n+ Y8+ 

(a, b) = (aA+ a&s + 24d dG, a = T, M, b = 8, x (4.3) 

If the quantity 8 in the formulas for T, m in terms of e, 0 is provided with a plus 
superscript, then we mark T, 8 with the same superscript. Ilence 

W(R, o) = 2 (T+, r+) + (M, x) - 
5 

[Tl+eI + Tl,+el* + Tl+e,l dG + 

+ C(X+- 
5 

W4i5)~+Iy+-~~uy --u)Zllo3-(Z++Zr+)wu)dG- 

- v+ 
s 

- ‘;;v, 

-kk,u)udy- l (S+‘-k,v)vdp- 

s 
-kk,w)wdr + f+(M+“-k,w.)w,dy (4.4) 

V#+ 14 + 

Let yr C 4)r+ denote the set in which k, < 0 (i = 1,2,3) almost everywhere. 
A.ccording to Lemma 2.3, there are constants e,*, cs*, ~a+ such that 

ll4Lrr6Cl*I4H? A491,rs8*I~Uffa 

I~I’bc8+nqrfq, $++=i 

Let us require the following condition to be satisfied 

where ct > c,* (f = 1, 2, a), and q correspond to (3.1). 

Lemma 4,1. If conditions (3.2), (4.5) are satisfied, then there exists a positive 
constant a independent of the choice of fl and o , such that for all sufficiently large 

R 
Q, (a) > aRa @ E L.9 (R, 0)) (4.6) 

Proof. The following 

@+ (R, 0) >a (” E 8 (i, 0)) (4.7) 

is equivalent to the latter assertion, 
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ft is evidently sufficient to prove that 

lim@+(R,w) ~0 f01 R-+cm(~~~(i,o)) (4.8) 

uniformly in Q) , then there is a constant o and (4.7) holds for sufficiently large R . 
Indeed, otherwise there would be a sequence (If,, a~,,} such that 

This contradicts (4.8), hence, the sufficiency of (4.8) to prove the Lemma should 
be acknowledged. 

Let us return to the proof of the inequality (4.8). Let us assume (4.8) to be violated. 
This means there exists a sequence (R,, ca,h such that (4.9) holds. Let us extract the 
highest member from the polynomial @+ (K, w) 

a,+ (ii, w) = 8B1 (et+ + &+I’ dG 

Lf the sequence 8t+,n,m of @a+,,,,l)l is not bounded in L, (6% then 

@+ (R,, WJ- -f-m 

and (4.9) does not hold, Hence the sequences %+rn,m, es’,,,,,,,, t)~~+,~,~ are bounded in 
Ls (C) since it has been assumed that (4.9) is satisfied. The boundedness of Br,+,,, 

as R-+ oomeans that 

II%, n. t&s* II%, 1. mIb.s+* p* m- 06 

Consequently, we can consider that WI-+ we weakly in H (6s (qJ = 0s (%I = 0). 
The sequence Ol+,n,m bounded in L,(C) can be considered weakly convergent, and 

moreover, because of (4.9) it can be considered that a finite limit exists 

Thus, a double limit of the sequence {WI?,., II s,s) exists aa n,~1-+ oo and a limit 
in nralso exists and equals zero for each fixed m M Applying the theorem on a duplicate 
limit, we obtain 

% = lim,JJm, a+,,,, k, t 0, n,m-+- 00 

Similarly, it is proved that 

Let us utilize the deductions obtained. Evidently for any e -+ f~ there is a positive 
integer no such that 
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Let us expand the expression for Q)+ (I?, 0) in (4.9) 

@+ &,:a$&) - 2 10, ~&- (M,, %J - 281 \ ((‘1, n + vCs,n)CI.n +@t,n fC,,n) $,n+ 

b 

+ 'ItO --v)&,k~~+ 5 Jw'dr + f hW+ 5 kdy+f(R,, y.1 

Yl+ Y,+ Y8+ 

A pl in the Ht)lder inequality, and utilizing condition (4.5), we can hence deduce 
the Polfbwkg: 

@+ (J& @rJ > ‘ii Jl@fJl ‘w+ f (%nc @n)* % m > no (8) 

If (R,. %Jt < 8, n, m > no(e), CJR-~ 

The inequali 
the validity of a: 

obtained explicitly contradicts the assumption (4.9). and therefore. 
e assertion in the Lemma hence results logically. 

Lemma 4.2. if conditions (3. l), (4.5) are satisfied, then condition (4.1) is also 
satisfied. 

Proof. Let us assume the Lemma to be false. In this case, for any R there are 
t, osuch that 

cs-_,KoGTO, t g WI, 0 Es@,O) (4.10) 

Let us consrruct the functional 

Taking into account the linearity of cDX (I, o) in t, we obtain 

Because of Lemma 4.1 for sufficiently large R there should be 

On the other hand, (4.10) holds by assumption and 

Therefore, the assumption that the Lemma is false leads to (4.10). and this contra- 
dicts (4.11). The Lemma is proved. 

Lemma 4.3. Rotation of the completely continuous field (i - K) o is + 1 
on a sphere &’ (I?, 0) of sufficiently lar e radius. 

The assertion in this Lemma follows a 
be inning of tie Section. 

om Lemma 4.2 and reasoning expressed at the 

B n substance, Lemmas 4.1 and 4.2 prove the following theorem. 

Theorem 4.1. Let conditions (3.1) and (4.5) be satisfied. In this case a solu- 
tion of the problem (1.6). (1.7) from H exfsts in a sphere of sufficiently large radius 

R. 
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Differential properties of the solution can be studied by utilizing the results obtained. 
Lemma 4.3 assures an a proximate solution of (3.10) according to theorems in fs] on 

the convergence of the Ga erkin method, and of other projection methods. f 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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We consider systems with quasic clic coordinates and analyze the motions in which 
velocities, im K ut not quasicyclic) coordinates are periodic funct- 
ions of time. K 

ulses and position ( 
e assume that the generalized forces corresponding to quasicyclic coor- 

dinates either depend on time only, or are proportional to quasicyclic generalized co- 
ordinates and rhat the latter are small. 

We show that, when certain requirements are imposed on the nonpotential forces with 
reference to the position coordinates in stable motions, then the quasicyclic impulses 
assume (u 
tion A 0 P 

to the small order terms) mean values yielding the minimum of some func- 
these mean values, This function can be expressed in terms of the Routi’s 

kineti: potential of the system, by the virial describing the forces acting upon the pcsi- 
tion subsystem by me quasicyclic subsystem, etc. This in turn yields various versions 
of the integral criterion of stability. 

Applying this criterion to the case of the oscillations of linear c~rent-carrying con- 
ductors, we can relate mean periodic values of the ma 
conditions of the combination of the averaged values o B 

netic fluxes to the extremal 
the magnetic field ener 

magnetization energy and of the mechanical kinetic potential (or the virial of 4 
y, 

deromotive forces). 
e pon- 

The case when the Routh’s equations are linear with respect to the position coordina- 
tes is considered separately, and we refer back to our previous papers on the problems 


