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Mathematical aspects of nonlinear shallow shell theory are examined in -2 ™.
Shallow shell relationships cannot always be utilized in a study of the problem of the
equilibrium modes of a closed cylindrical shell within the scope of the nonlinear theory
of "mean” flexure [**]., A theoretical investigation of the nonlinear equations for a
cylindrical shell, obtained without utilizing the shallowness hypothesis, is presented
herein, The existence of a generalized solution of the nonlinear problem for an arbit-
rary loading, and arbitrary support conditions is proved.

1, Fundamental relationships, Formulation of the problem, Let
us examine the tollowing moditication ot the relationships of the nonlinear theory for
3Igyli‘n]c:lrical shell which are easily obtained from the relationships for the mean flex-

vk 1.1)
g =uy + 1Y, wyl, g, = vy + kw + Ya (wy’—kv)2
28y = uy + vz fwe(w, — kv)
Hy = —Wyy, %y = —Wy, + kv, Hyg = —Wyy | kg
T, =2B, (e, + vea), T, =2B, (ve; + &), Ty =B, (1 —v)2e,
M, =2B, (% +vxy), My =2B, (v, +%;), M, =2B;(1 — vy,

. Eh _ Ehs _ B B
Bl—z—(f—\")' B’_'ZT(i—vT)’ B“—F:' Bu-— §:—, 0<v<0.5

The following notation is utilized in (1,1): ¥, ¢, @ are displacements of points of the
middle surface; the subscript %, ¥ on the u, », w denotes differentiation with respect to
z, ¥, respectively; &, By, €13 are the tensile and shear strains, and xj, %g %12 chan-
ges in the curvature of the shell middle surface; T1, T4, T1 the stress resultants in the
plane of the shell; Ni,-N, wansverse forces; M,, M,, M1s the bending moments and

torque; E, v the elastic constants of the material; h the thickness, and k the shell
curvature, The # -axis is directed along the cylinder generator, the ¥ -axis along the
tangent to the directrix, and the z-axis along the normal to the middle surface.

The shell planform occupies a domain & with boundary I,

G ={(z,¥): o] <b, iyl <hh =", YT, r =o'y r*
' ={(z, y):2 = —1, ly| < L} ' ={(z, y): 2 =1, yl < la}
I, =T\,  (kfy =)

*) See also the Doctoral Dissertation of I, 1. Vorovich,



On the solvability of general problems for a shell 65

Here l; is half the shell length. Evidently I',!, T',* are the left and right endfaces

of the shell, respectively.
The state of stress in a normal section of the shell is characterized by four quantities:

T, the stress resultant normal to the contour in the plane of the shell; §, the tangen-
tial; N, the transverse stress resultant; and A, the bending moment. The equilibrium
differential equations in the stress resultants are the following:

orT aT
aT ar oM oM
:+ ) + kT, (1, — kv) 4 "Tu‘”x+"(_l | T:l)_[y_(wu._.lu;)z,]_—o (1.2)

aM, 02M, 03M, d /]
913 +2 9zdy + oy? + oz (lez) + "a_y‘ (anx) +

i) 3
+ 57 [Ty (w, — k)] + By [Ty (0, k)] — kTy-—(Z + Z1) =0

Here X,Y, Z are surface loading components in the £, y, z coordinate system
whose direction is independent of the strain* Z; the normal following loading (hydro«
static pressure)., Taking account of the X;, Y;components within the scope of mean

bending theory is inconsistent. - +
Let the geometric and static boundary conditions be given on the sess V¢ and Vi

(i =1, 2,3, 4), respectively. Evidently y,* C I'},and y2h \7' =
= 1,2,3,4),since the support may be at internal points of the domain @G, The follow-
ing boundary conditions are considered on TY:

u |Y|- =0, v lv." =0, w, v~ = 0, w e = 0 (13)
{Th—(T°— k) y+ =0, {Sn—(8°—kgv)} |+ =0 (1.4)
{Np — (N° — kqw)} [+ =0, {Mp— (M° —kawy)}|y+ =0

Here %1 (%), ks (¥), k3 (y), ki (y) are characteristic of the elastic support;

T°, §°, N°, M° the external loading on the shell endfaces: the tensile, shear ,
ransverse stress resultants, and the bending moment, respectively, The boundary con-
ditions on I, are:

u, v, w, wy, Tpn, Sn, Np, Mo |iZ, =0 (1.5)

Henceforth, we shall study the boundary value problem (1.2) - (1.5). After having
substituted (1.1) into (1.2), we obtain the following equilibrium equations in terms of
displacements:

4 —
Uy + zvuw—i--i%”'v,":*-‘%lvkw—f-‘/,wz’—i—%(wv—kv)’]_
(1—v) 0 (X —w,Zy)
— 0 [we oy — ko) + T2l =
2 u,,+‘—-2_--'(1+4a’)v,,+(1+a’)vw—-

2—v)
k
e - (1=v 29

a
X Wyyy 2 oz (Wx (wy — kv)]—w [‘;" w,? + kw +

14v

3
aw”v—
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+%(w,,—kv)’]—k(wv—kv)[vu, +-;-w,,’+v, -+ kw +

+ 5 (0 — ko) | — 5 b, (w0, - w0 (0, — ko) +

[¥ — (0, — kv) Z,]

+ 2B, Ef!
ot
Bu[ G +2 550, + 5 —(2—v) kom, — k5] =

= %{w,[ux +%w,’+vvy+vkw +—§-(w,——kv)’]}—-

_k[vux - % we? 4 vy, + kw + %—(wv—-—kv)’] +,_a% {(w, — kv) X
X Vit + St - oy o+ hw 5 (0, — k0PT} + (1 — v) (0, — R0y +

+ Vx -+ walwy — kv)]} + d ;—v)% {wy (v, + v, +
o, — ko))~ GEB < f (a2 =i, (1.6)

The equations on the boundary are

Uly-=0,  ue+ v, = —vhkw—"1,[w? +v(w, —kv?)] +
-+ (ZB])_I(TO-—"CIM) = (Dl Ha 1t

vh-=0, u,+(1 +4a’)v,——-;£—a’wwm
=(§°—k)[Bi{(1 — V)| —u(w,—kv) =Dy na nt
wh,-=0, fa; (Wit (2 — ) (w,, — kvy)] =(2Bs)™ (N° — kw) +
+ Bis {wx [ux + Yawe® + Vo, + vhw 4 Y4y (w, — kv)*]} +
+ Bigt/s (1 — v) {(wy — kv) [uy 40+ we(w, —kv)]} = O3 ma ppt
Wely- =0, e +v(wyy—kvy) =~ (2B (M’ —kaw,) =D, ma 1

y=!. —
u, v, w, 4, Dy, Wy, wyw Wyyy ly=—h = 0 (1'7)

Before investigating the problem (1.6) - (1,7), let us introduce some auxiliary con-
cepts, and let us prove some propositions,

2, Auxiliary propositions, Let @ = (u, v, w) denote a vector function with
components u, r, w. Let us inroduce the bilinear form

A (@, @)= 23,8 g o+ voy - vho) 8y 4 (vuy o+ vy R ) (v, A Rwy) +
G

+ 1/2 (i - V) (uL 1Y) + »L x) (ug_ v + ”g, x) + ] [WL zwg' x + (“’1. v kvx) (ID" v kvg)l +
+ By [y, g+ VW, g = VAR ) 0p e (V0 e+ 0y — KOy ) (0 oy — Koy )+
+2(1—9) (W, oy — ko %) (W, ey — kv 2NdG (2> 0) (2.1}

It is easy to see that if 4 (w, @) = 0, then

e;=8,=eu==x;=x’==x“zo, w,=wv--lw=0



On the solvability of general problems for a shell 67

This means that @ is the displacement of the shell as a rigid body.
Let us introduce some functional spaces. A class of functions given in a swip |2 &,
which is periodic in ¥ with period 2l,, can, depending on the metric introduced in it,

result in different functional spaces. Hence, because of periodicity, the norm may be
computed by ineans of the periodicity rectangle in y , the domain G. In contrast to the

customary spaces € (G), Ly (G), W,(')(G), let us supply the space with the degree sym-

bol in the case of periodicity in y The most important ?ropem&s of the above~mentioned
classes of functions carry over completely to the case of partial or total periodicity, In

particular, the space Wp(™ (G°) is completely analogous to the Sobolev space, and the
same kinds of imbedding theorems [*] are valid for it as for the classes of W, "G).
The norm Wp(™ (G is denoted by || |, p, G, and the norm in G (G*) by | *|
Several other notations are elucidated below,

b bpa=l & p gtb,p.v‘*‘:i-f"p.i' ‘f,c(y‘a»):‘l”u ifﬁ,,a’=5“|"m
G

In this notation

ISl =0 B+ xlo,g®+1 ylog™
U= o 1 xxloa® + 28 sfo’ +1 pylon’

Let £, the closure of all smooth vector functions ® in the strip |2 | < §; which are
periodic with period 2l, in y and satisfy the geometric boundary conditions (1.3), @
denote the closure in the norm of the product of the spaces

W (G) x W,y (G2) x W,(G*)

As usual, the norm is defined as the direct product

folg?=ful,*+1vh*+ivk,

Let M (C E be a linear set of all elemenss w & E for which A {0, ®) =90. Combin~
ing those elements @’ and ®* equal to M in absolute value, i.e. o' — 0’ € M,
into & single class ® , we arrive at the space of classes E* = E/M, a factor space of
the space E over the subspace M. In other words, the displacement o is defined to

the accuracy of displacement of the shell as a rigid body under the constraint (1. 3).
By definition, the factor-space is

qm'x.=infﬂw'lg. O’EW

It is easy to see that there exists 8 unique "normal” representative ©* of the class w
such that

jolg.=}e*g
The space £ is a Hilbert space, hence E® is also a Hilbert space, and therefore

(@1, 0g)p0 = inf (W', 0" ) gy 0’ €0y, 0 €0,



68 1.1, Vorovich and G, A, Kosushkin

Lemma 2,1, Forall o & E*

m <floljg.e  (m>0) (2.2y

Q:Iw", H’m).p,a; ,=wx)wu| u, v, a=G,T
Here y is a piecewise~-smooth contour from G, 1  p < 00 and m is independent of
the choice of « but depends on {a, p}. Moreover, the ratio expressed by the inequality

(2.2) possesses total continuity, i.e. from the boundedness of the set {0} in E* follows
compactness in the sense of the left sides of (2.2).

Proof, The inequalities (2.2) are obtained by a unique method by using imbedding
theorems, hence, we carry out the proof on one of them as an illustration

mlw* | <lw*ly,s SH0* gy =] o|g.

Let us show the complete continuity of the ratio in this same example, Let the set
{o:|lojig. < C} be given. Consequently l|0*jlz < C, and taking into account the com-
plete continuity of the imbedding w,3)G*)— C (G*), we obtain that (w*} is compact
in €(G®). The assertion in the Lemma is proved.
Let us inroduce a scalar product in the space E*

(“)h mt)H =4 (mlv (l).)

where the form A4 is defined by (2.1). Then

foly= 2B‘S {(uy + Vo, + vEw) u, + (Vi 4 v, + kw) (v, + kw) +

G
+ l/' (‘ - v) (uv + vx)’ + a [wx’ + (wy - kv)’] + Bn [(wn + WVII - vkvv) Wyy +
+ (Vg + wy, — ko)) (0, — kv) + 2 (1 — V) (W, — kv, )3]) G 2.3)

Lemma 2,2. Forall o & E*

m"“’ﬂE‘<“‘°ﬂH<mx lolige (m, my >0) (2.4)

Proof. According to (2.3), evidently

o' §y* < const fl@’ |jg?

Passing to the exact lower bounds in all the elements ' & @ we obtain that
jolly € mil@lge Let us prove the left side of the inequalities (2.4). It is actually
necessary to show that

m=inf (folgloliz™ >0, oec E*

Let us assume m==0. In this case there exists a sequence {®,} such that opllge =1,
Hopllgy— 0, and ©,— 0, weakly in E* as n-—» oo,

It turns out that the assumption that @, = O results in a contradiction, In fact, let
0y = 0. From ll@,l;— 0 we obtain

un, ;' vn, ; + kw;, Uy, ; + Va, 20 Wn, gxx0 Yn, w k”n, v
Wy ey — kvp, 2= 0 in Ly (G°) (2.5)
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and from the fact that w,— 0 weakly in E*, and from Lemma 2.1 we have

i wn.l' i Wy, ;FI)." ﬂwn. ;'0.3 -0 (2.6)
On the basis of (2.5), (2,8), we conclude

O o “’n: xx n, yy— 0inLa (6°)

The estimate of the mixed derivative {7) is known for functions from W,3)(G) and
we present it in our terminology

W 2y 0.0 S comst (f “'n,.:r bo,s +1 "’n,.w bt lwn,.x bst 'wn..l‘."'r’ + lw". “0-2) @7

As a result, {Wa*|lsa— O from (2.6), (2.7). According to (2.4), it hence follows
that  |[up®ll,es llon®|l,s— O. This means that onllge =0 as n—- oo (|lwpllge = 1).
There is 2 contradiction, hence ®g % 0.

We have 0, = ©g 4+ ¢, where §5 = Op — ©¢ and §,— 0 weakly in E®. By
assumption

w0 -+ Pyl w00}y 4 2 (woo Pp)yy + 1Py Mgt 2.8)

Since
(0o, @, )y | ST ol 19, Iy < const Jan]ged @, 5.

then (@ #)y is a linear functional in E* and the product (@, §a)H—0 for §,— 0
weakly in E® . From this and from (2.8) we obtain |@dly* + lI§ally*—- 0 as n— oco.
This time we arrive at a contradiction to @g5=0. The assertion of the Lemma is proved,

According to Lemma 2,2, the norms lI'lly and [I*llg+ are equivalent; the space E*
with the norm |'llz will be called the space H.The following lemma is valid,

Lemma 2.3. The assertion of Lemma 2.1 remains valid if H replaces E* through-
out in the formulation,

3, Generalized solution, Let us assume the following conditions to be satis-
fied:

X, Y,2,€L,(G)y, Z2€L@G), T kheLm)
S kg &Ly (v"), N kyEL ("), M ki &Ly (v (g>1) 3.1)
Here ¢ is some fixed number. It is known that the equilibrium condition can be
expressed by using the principle of virtual displacements
A@, o) = §{T‘ (s + wawe?) + Ty [v,° + ku® + (w, — ko) (w,” — kv)] +
+ Tialu,” + v + we (w,° — kv°®) + v (w, — kv)] —
— M ywe® — My (wy,° — kv,°) — 2M 13 (0y)” — kv,°) +
(X —weZ)u + |Y — (wy— kv) 2411 v° +(Z + Z,) w°} dG —



70 I.1. Vorovich and G. A, Kosushkin

— S (T° — kyu) u®dy — S(S"-—k,v)v°d7-— S (N° — kgw) wdy +
vyt st Yot
+ S (M° — kaw,) wdy =0 (3.2)

Yot

Here ©®is a virwal displacement, and the curvilinear integrals are written taking
into account the customary rule of aversing the contour,

Definition 3.1. Let the function ® € E, which satisfies (3.2) for all 0° = E,
the generalized solution of the problem (1.6), (1.7) under the condition (3. 1).

It is easy to see that each member of (3. 2) is meaningful under these conditions, To
do this it is sufficient to estimate each member in (3.2) by using the Holder inequality
and Lemma 2, 3,

Let us show that (3,2) is equivalent to some operator equation in #. Indeed, accord-

ing to (3.2), (1.1) we can write the following equation for the representatives *, @°*
of the classes @: and w° :

A (0%, ©°*) =2B, i {(ux‘ + vvuc -+ vkw*) ux”'*‘(",,‘ 1 ks
G
+ vu *) (vv"a + kw®*) 413 (4 — ) (uvt +.% (u”o. + vx,.) +
+ Bu {(v,,* + vwwt — vvvv) w3, 4 (Vo * + "’w. _ '"’v.) x
X (WW.‘ —_— kvvoa) +2(1—v) (ww‘ — kv *) (wxyo. — ko )] +
+ afw v °* 4+ (wvo:,_ ko*) (wuo. — ko°%)}}dG +

+ <2B, Vi—a o o0,0s 4 (0,0 — k0% (0,04~ koo +
G
+ [“:. +Ys thl -+ yvvt + vkw* 4 l/' v (wv‘ — kv‘)’] wx.wz.. 4
+ Yalw, *t + v (wll‘ — kv ug ® + [Vu® + Yavw, ,,vo + kw* -
+ s (,*— ko*)p) (wvo — kv®) (wvu — ko*%) + Vs (v 9 + (wvo — kP (v, °% + %) +
+@—v) (s ot tw s (w— kv®)) lw,* (0, ** — kv°*) +
1,00 (0,0 — ko¥)] + 3a (1 — V) [0, (0% — kv*) (u,°* +2,°%))) d0> +
+ g (X —w* ) u* - (Y — (0 * — kv®) 23} v°% + (2 + Z)) w°*} dG —
G
— § @ =k uerar - (& — ke vosar —
nt Y‘lf

J— S (N' — kgw®) w°* dy + S (M' — Imo:‘) w:"d'r =0 (3.3)
ut Tt

Henceforth, only normal representatives will appear throughout in the expressions,
hence we omit the asterisk. Let us use the representation

A0, 0°) = (0, 0%y + (1 (0, ©*) + Qs(, ®°) (3.4)

where Q) (@, @*) is a member from (3.3) in the brackets ¢.,..) .
Lemma 3.1, The functional

Pu() =By (o +Yowst 0, @y — ko)t +hw o, — ko' +



On the solvability of general problems for a shell 71

(3.5)

Y oy — RO - vagry— k0P + ¥ (0, + okt + Yavwy * @0, — ko) +
+(1—v) (uu + V2) wy (wv" kv) + 1/! (1 - V)‘”:’ (wv - kv)’} aG
is weakly continuous in H,

Proof. Let w,— 0, weakly in H, then by Lemma 2.3

H"’n.zx —wo el 100, y— kot — (wg, y — kvolfo s~ O

It is known that (fa1§a)=> (fa %o} if fn—> fo in the weak, and §.—+ ¢, in the
strong sense in Hilbert space. Applying this reasoning in (3.5) we obtain Py (w,)~—>
— P (0y) for ©,— o, weakly in H, Therefore, P, (@) is weakly continuous in #

It can be seen by direct verification that Q, (e, w°)is a Gateau differential of
P, (@). The following estimate holds

[Q1(0, 0°)| < const (Jo[u® +|o]a® + o fu) |’

Hence Q, (w, «°)is a linear functional in @° in H , and by the Riesz lemma the
following representation is valid

(grady Py (0), 0°)g = ¢1(0, ©°) (3.6)

Note. The operator geady Py (W) is strongly continuous in M, as follows from
the theorem of E. S, Tsitlanadze (8] on the complete continuity of potential operators.

Lemma 3.2. The representative

Q; (0, 0°) = Ky, «°) @.7)

is valid, where Kja is a strongly continuous operator in H .
Let us first prove that (3,7) holds. It is easy to obtain the inequality

|Qa (@, @°)] & const (llmlm + const)jje°||,

where the constants are positive, and independent of @, w°. It is hence seen that

Qs (w, ©°) is a linear functional in ®* and the Riesz lemma verifies (3.7). Now let
o, —» 0w, weakly in H. Taking account of (3.1) and applying the Holder inequality,
we can write the following:

l(x'@,‘—xﬁhl ©)y | =] Qs (g @) — Qs (0o, ©°) |
<<const {fw, o — v, ol g, + 19 y— ¥, ylo,g +
+iv,— ol g, Hluy—vo kg, 1+ 174 — Vol s +
0, x— Wy, xhy, o 12, — w0 g (3.8)

where g1, g5, g5 > 1 are some indices. Taking account of (3.8), the weak convergence
o ®,, Lemma 2,3, and the following norm definition
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[1Kq0p — Kyollyy = sup | (Ka0n — K300, 0°) g, fj0°)ly =1

we obtain that Kyop,— Ky®y in H if ©0n~>®, weakly, The Lemnma is proved,
Let us substitute (3. 6) and (3. 7) into (3.4)

A (o, 0°) = (0 — Ko,0%4, K =-—gradyP, (o) — K, (0)

Therefore. (3.2) is equivalent to the equation
(0 — Ko, 09y =0 (0° € H) (3.9)
or an operator equation with the completely continuous operator

o — Ko =0 (3.10)

4, Existence of the generalized solution, The complete continuity
of the operator X in H permits application of the Schauder-Leray method to prove

the existence of a generalized solution of the problem. The scheme for utilization of
this method in the theory of solvability of boundary value problems for shallow shells

has been developed in [3], hence, we shall not dwell on terminology. Let S (R,0) be
a sphere of radius & with center at zero

SR, 0) ={o: ||o]|x =1}

It turns out to be sufficient to prove that the completely continuous vector field
® — Ko is homotopic on the sphere S (R, 0) of sufficiently large radiuvs H twoa
completely continuous vector field I w, where [ is the identity operator, for which
the rotation is 4 1 [®] . For homotopy it is sufficient to show that

(I—tK)Yo=+=0 for o, te SR, 0)x[0,1) (4.1)

and R is arbitrary. Here f:is a real parameter. When (4. 1) is valid, it follows from
the theory of the Schauder-Leray method [®] that a solution of (3 1 ) exists in the sphere
llolly <<R . In this section, it will essentially be proved that condition (4, 1) is satis=

fied. Establishment of the inequality (4. 1) is one of the basic propositions of this proof.
The method proposed in [3] is utilized here to obtain it,

Let us introduce

€ =Uy, & ==Uy +hkw, ey=1u,+ U (4.2)
8, =2 we, 8, =Y (w, — kv)?, 6,3 =wy (wy— kv)
a = (ay, a; ap), a—e0, %, ¢ T M

0* —6R, R>0, a, —=R%, a=2X, Y. M
o (ﬂ)} =A (mv (0) = ((:J - K! w, m)li: ‘{muH =R
O (R, 0,) = RO (u), lo g =1

Taking account of (3.2), let us write the expression

D (0) =2(T, &> + (M, %) _nglux + Tyauy + Taey + Ty, 1 dG 4
¢
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+ § (X — w2y + (¥ — (0, — k0) Z,) 0 + (Z + Zy) w} dG —

— S (T°— ku)udy — S (8° — kyv) vdy — S (N° — kw) wdy 4

nut Yt "t

+ S (M° — ko) wdy

Yot

<a, by = §(a,bl + Gyby + 2a15b1s)dG, a=T,M, b=¢, x (4.3)

If the quantity 0 in the formulas for T, ¢ in terms of e, @ is provided with a plus
superscript, then we mark T, ¢ with the same superscript. Hence

©* (R, 0) = 2CT*, ¢*) 4 (M, %) — § (T1"e + Tuaters + Ta*esl dG +
+ § (Xy— wez0) ¥ + [V, — (0, — ko) Z1) 0 + (2, + 21,) w}dG —

— { @ —rwyudr— [ (8,° — kwyvdy —

¥+ vyt
— (e —kwywar + { (1,0 — ko) wedr (4.4)
‘h"' YA"'

Let ¥, < ‘Y,+ denote the set in which k' <0 (i =1,2,3) almost everywhere,
According to Lemma 2.3, there are constants ¢ * ¢ * c,* such that
s s
Jub, g < *lojs?, 1vfo, g ve S Ca* 0 Jn?
1 2
Jo (g 10] PRLR -q—+~";l-=1

Let us require the following condition to be satisfied

Cxlkxﬂo. an +Caﬂks||o. ant ca"kslt). < (4-5)

where ¢, > ¢;* (i =1, 2, 3), and g correspond to (3.1).

Lemma 4,1, If conditions (3,2), (4.5) are satisfied, then there exists a positive
constant ¢ independent of the choice of R and w , such that for all sufficiently large
R

D () > oR? (o € S (R, 0) (4.6)

Proof. The following
o* (R,0) > o 0ess1,0) 4.7

is equivalent to the latter assertion,
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It is evidently sufficient to prove that
lim O+ (R, 0) >0 foo R—o00(w &S (1, 0) (4.8)

uniformly in @ , then there is a constant o and (4.7) holds for sufficiently large R .
Indeed, otherwise there would be a sequence {Rp,, ®,) such that

O* (R, 0y)—>¢, Ryp=>00 for nym—>00  ¢<0, o, €5{1,0) (4.9

This conwradicts (4. 8), hence, the sufficiency of (4.8) to prove the Lemma should
be acknowledged.
Let us return to the proof of the inequality (4.8). Let us assume (4. 8) to be violated.

This means there exists a sequence (Rm, ®ah such that (4, 9) holds, Let us exwact the
highest member from the polynomial ®* (H, ©)

ac* (R, ©) =8B, §(e;* +85*)2dG

If the sequence Ot ., of 05, .. is not bounded in L, (G), then
L (Rm’ e)n)—-; -} oo

and (4. 9) does not hold, Hence the sequences 91*,n,ms 95" ,n.m+ 013" ,n,m are bounded in
L, (G) since it has been assumed that (4. 9) is satisfied. The boundedness of 01,%.,m
as R—» oo means that

ﬁﬁx' n.om "o,g' ﬁez, n,m Io_l {0, & m—» oo

Consequently, we can consider that on—> @, weakly in H (6; (0} = 6, (0,5} = 0).
The sequence 6,*,,,m» bounded in L,(G) can be considered weakly convergent, and
moreover, because of (4, 9) it can be considered that a finite limit exists

lim |0, n,m los = b, n,m=» 00

Thus, a double limit of the sequence {{[01.*n.m l| oa) exists as n,m—» 00 and a limit
in mralso exists and equals zero for each fixed m. Applying the theorem on a duplicate
limit, we obtain

B = lim,lim, 1" . fes = 0, B,m~> 00

Similarly, it is proved that

lim Wl’.n.m Hes = lim || els*m.m Jors = 0, n,m=—» 00

Let us utilize the deductions obtained, Evidently for any g « 0 there is a positive
integer n, such that

Sa,"mbn',,,dc<10"a npu a, m > n, (€)
G

@ == el*v 0". el'*p b= €1 s, €13



On the solvability of general problems for a shell 15

Let us expand the expression for ®* (R, ®) in(4.9)
O (R, T0,) =210, Iyt — My, %5 — 2By {(ey, n+ Yoy, w) ey, n H g 0+ g0 €, ot
G
+Ys(l —v)el, }dG+ S kautdy + S kav'dy + S ksordy + (R, ©,)
Yt st it
Applying the HSlder inequality, and utilizing condition (4.5), we can hence deduce
the ?olf‘:)w g:

Dt (R, 0] 2> s loal S+ 1 {Rpmi0p)y, n,m > n® ()
If (R, 0p)} <6, n, m > n,(e), fonl g =1

The inequalig obtained explicitly conwadicts the assumption (4.9), and therefore,
the validity of the assertion in the Lemma hence results logically,

Lemma 4.2, Ifconditions (3.1), (4.5) are satisfied, then condition (4. 1) is also
satisfied.

Proof., Letus assume the Lemma to be false, In this case, for any R there are
t, wsuch that

® — tKko =0, g fo,11, 0 &S(R,0) (4.10)

Let us construct the functional

@, (1, 0) = (@ — tKo,w)y, D, (0, 0) = [ofi?g, O, (4, 0) = Dw)
Taking into account the linearity of @y (¢, @) in ¢, we obtain
@ (£, 0) = (1 — 1) Dy (0, 0) + @y (1, 0) = (1 — &) [f*} + 1O (@)
Because of Lemma 4.1 for sufficiently large R there should be
D1 (2,0) > — N opP + 0] Y= (1 — ¢ + t0) foly® > min (1,0) gt (A1)
On the other hand, (4. 10) holds by assumption and

D, (¢, 0) = (0 — Ko, 0)y =0

Therefore, the assumption that the Lemma is false leads to (4. 10), and this conta~-
dicts (4.11), The Lemma is proved.

Lemma 4.3, Rotation of the completely continuous field (J/ — K)o is + 1
on a sphere S (R, 0) of sufficiently large radius,

The assertion in this Lemma follows from Lemma 4.2 and reasoning expressed at the
beginning of the Secton,

n substance, Lemmas 4.1 and 4.2 prove the following theorem.

Theorem 4,1, Letconditions (3,1) and (4.5) be satisfied, In this case a solu~
tion of the problem (1.6), (1.7) from H exists in a sphere of sufficiently large radius

R.
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Differential properties of the solution can be studied by utilizing the resulis obtaiped.
Lemma 4, 3 assures an afproximate solution of (3. 10) according to theorems in [#] on
the convergence of the Galerkin method, and of other projection methods,
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INTEGRAL CRITERION OF STABILITY FOR SYSTEMS
WITH QUASICYCLIC COORDINATES AND ENERGY RELATIONS
FOR OSCILLATIONS OF CURRENT-CARRYING CONDUCTORS

PMM Vol. 33, No, 1, 1969, pp. 85-100
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We consider systems with quasicgclic coordinates and analyze the motions in which
velocities, impulses and position (but not quasicyclic) coordinates are periodic funct-
ions of time, We assume that the generalized forces corresponding to quasicyclic coor-
dinates either depend on time only, or are proportional to quasicyclic generalized co-
ordinates and that the latter are small.

We show that, when certain requirements are imposed on the nonpotential forces with
reference to the position coordinates in stable motions, then the quasicyclic impuises
assume (up to the small order terms) mean values yielding the minimum of some func=
tion A of these mean values. This function can be expressed in terms of the Routh’s
kinetic potential of the system, by the virial describing the forces acting upon the posi~
tion subsystem by the quasicyclic subsystem, etc. This in turn yields various versions
of the integral criterion of stability.

Applying this criterion to the case of the oscillations of linear current-canrying con-
ductors, we can relate mean periodic values of the magnetic fluxes to the extremal
conditions of the combination of the averaged values of the magnetic field energy,
magnetization energy and of the mechanical kinetic potential (or the virial of the pon-
deromotive forces).

The case when the Routh's equations are linear with respect to the position coordina=-
tes is considered separately, and we refer back to our previous papers on the problems



